IPB

Добро пожаловать, гость ( Вход | Регистрация )

> Правила раздела

Публикующим:
     1. Задачу можно опубликовать двумя способами:
          - создав для нее отдельную тему с информативным названием;
          - добавив задачу в готовый сборник (например «Бескрылки», «Мини-задачи», «Вопросы ЧГК») или создав свой (например, «Загадки от /для Светы»).
     2. Если вы публикуете задачу, решение которой не знаете, напишите об этом. По умолчанию считается, что вам известен правильный ответ и вы готовы проверять других игроков.
Решающим:
     1. В темах запрещается писать ответы и подсказки, если возможность открытого обсуждения не оговорена отдельно (в случае открытого обсуждения для текста следует использовать цвет фона или белый, оставляя другим игрокам возможность самостоятельного решения).
     2. Правильность решения можно проверить, написав личное сообщение автору.

15 Страниц V < 1 2 3 4 5 > »   
Ответить в эту темуОткрыть новую тему
> Парадокс двух конвертов, теория вероятностей
Рейтинг  5
John777
26.11.2009, 9:18
Сообщение #41


Kорифей
****

Группа: Пользователи Braingames
Сообщений: 1 669
Регистрация: 13.11.2008
Из: Москва
Пользователь №: 10 702



QUOTE(snav @ 26.11.2009, 7:59) *

А насчет вашей фразы "мы знаем кол-во денег в одном конверте, но не знаем в другом" я уже писал, что согласно парадоксу нам нет нужды знать кол-во денег в конверте. Наше решение о смене конверта не зависит о суммы в первом конверте, поэтому в него можно даже не заглядывать, а сразу выбирать второй конверт. Получается что ценность второго конверта априори выше ценности первого. В этом и абсурдность ситуации.


Я полагаю, что наше решение не зависит от суммы в первом конверте, но зависит от самого факта знания нами этой суммы. Т.е. когда мы знаем сумму в первом конверте, но не знаем ее во втором, мы выбираем второй.


--------------------
Изображение
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
snav
26.11.2009, 9:45
Сообщение #42


Kорифей
****

Группа: Модераторы
Сообщений: 4 133
Регистрация: 13.4.2008
Из: Россия
Пользователь №: 7 457



QUOTE(John777 @ 26.11.2009, 9:18) *
Я полагаю, что наше решение не зависит от суммы в первом конверте, но зависит от самого факта знания нами этой суммы. Т.е. когда мы знаем сумму в первом конверте, но не знаем ее во втором, мы выбираем второй.

И где же тут зависимость от "факта знания нами этой суммы"? Термин "зависимость" предполагает, что решение может быть разным исходя из произошедшего события. В нашем случае решение всегда одно - конверт меняется в любом случае. Никакой зависимости нет.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
snav
26.11.2009, 10:04
Сообщение #43


Kорифей
****

Группа: Модераторы
Сообщений: 4 133
Регистрация: 13.4.2008
Из: Россия
Пользователь №: 7 457



John777, попробую проиллюстрировать нелепость ситуации еще одним примером.

Кладем деньги в конверты (в один конверт - в два раза больше, чем в другой), тщательно перемешиваем конверты и кладем их на стол. Теперь приглашаем двух человек. Один заглядывает в левый конверт и приходит к выводу, что ему выгоднее взять правый конверт. Другой участник смотрит в правый конверт и приходит к выводу, что выгоднее взять левый. Каждый меняет конверт и получается, что в среднем они оба выигрывают!!! Надеюсь, вы согласитесь, что такое невозможно. Иначе придется признать, что при большом числе испытаний они вместе выиграют больше денег, чем за всё это время было положено в оба конверта. smile.gif

Таким образом, смена конверта не может увеличить среднестатистический выигрыш, т.е. менять или не менять конверт - не имеет значения.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Powered by Java
26.11.2009, 13:23
Сообщение #44


Активный участник
***

Группа: Модераторы BrainGames
Сообщений: 544
Регистрация: 9.6.2008
Пользователь №: 8 397



QUOTE(snav @ 26.11.2009, 10:04) *

John777, попробую проиллюстрировать нелепость ситуации еще одним примером.

Кладем деньги в конверты (в один конверт - в два раза больше, чем в другой), тщательно перемешиваем конверты и кладем их на стол. Теперь приглашаем двух человек. Один заглядывает в левый конверт и приходит к выводу, что ему выгоднее взять правый конверт. Другой участник смотрит в правый конверт и приходит к выводу, что выгоднее взять левый. Каждый меняет конверт и получается, что в среднем они оба выигрывают!!! Надеюсь, вы согласитесь, что такое невозможно. Иначе придется признать, что при большом числе испытаний они вместе выиграют больше денег, чем за всё это время было положено в оба конверта. smile.gif

Таким образом, смена конверта не увеличивает среднестатистический выигрыш, т.е. менять или не менять конверт - не имеет значения.

Первый и второй участник находятся перед разным выбором. И говорить, что они выиграли или проиграли при смене конверта одинаково нельзя! Давайте построим все таки модели испытаний, из которых будут очевидны плюсы и минусы принятия решения, и определимся, что мы сравниваем.
Модель 1.
Формулируем вопрос: Как поступить, чтобы уйти с конвертом в котором больше денег?
Описываем эксперимент: Выбираем случайное число X на каждом испытании и в 2 конверта раскладываем X и X*2 денег. Случайным образом выбираем первый конверт. Суммируем кол-во угаданных с первого раза за стратегию оставить первый, не угаданных за стратегию взять второй. Сравниваем и получаем, что шансы равны. И симметричность и мат ожидание скажут, что нам все равно. Ведь тут мат ожидание не конкретной суммы денег, а угадать конверт.
Модель 2.
Формулируем вопрос: Как поступить, чтобы уйти с бОльшим кол-вом денег, если сумма в конвертах выбирается случайным образом для всех испытаний?
Описываем эксперимент: Каждый раз выбираем случайное число X. Раскладываем деньги, делаем выбор, суммируем полученные деньги и сравниваем суммы у игроков... Постойте! А как можно сравнить выигрыш в 1$ и в 10$ и проигрыш в 0.5$ и 5$? Нужна норма!
-- Модель 2.а, нормируем случайное число х. Таким образом получим, что пара будет выбираться каждый раз одна. В такой формулировке и мат ожидание и симметричность скажут, что нам все равно, какой конверт выбирать.
Условия задачи допускают много трактовок. Если первоначальную сумму в конвертах считать заданной, а факт обнаружения в конверте конкретной суммы игнорировать (т.е. утверждать, что игрок обнаружит фиксированные значения X и X*2 с вероятностью 50х50), то получим вполне законный и обоснованный результат. А можно ли так трактовать? Конечно да smile.gif Данная задача не описывает конкретную модель, которая может/не может быть применима. Именно эта модель должна быть использована в в примере из цитаты svan. Бесспорно, что и мат ожидание такой модели выдаст 50х50 и противоречий не возникнет.
-- Модель 2.б, нормируем открытую сумму из первого конверта. Тогда получим, что в конвертах может быть либо X и X*2, либо X и X/2 с равной вероятность, где X - деньги из первого открытого конверта, на которые нормируем. Эта модель и позволяет говорить о бОльшем мат ожидании во втором конверте и отсутствии симметричности.
Можно ли модель 2.б применить к этой задаче? Вполне. Задача, опять же, не имеет четко-заданных ограничений на применимость обеих норм.
А в чем ошибка док-ва, которую следует найти? В том, что использованы две разные и не совместимые модели для доказательства.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
John777
26.11.2009, 14:04
Сообщение #45


Kорифей
****

Группа: Пользователи Braingames
Сообщений: 1 669
Регистрация: 13.11.2008
Из: Москва
Пользователь №: 10 702



snav, спасибо, понял свою ошибку в понимании симметричности.

Powered by Java, извините, но уши вянут wink.gif

QUOTE(Powered by Java @ 26.11.2009, 13:23) *

А как можно сравнить выигрыш в 1$ и в 10$ и проигрыш в 0.5$ и 5$?


Нам не нужно их сравнивать! Нужно сравнить ожидание выйгрыша и проигрыша в сумме за несколько игр (или за одну игру).


--------------------
Изображение
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Powered by Java
26.11.2009, 14:14
Сообщение #46


Активный участник
***

Группа: Модераторы BrainGames
Сообщений: 544
Регистрация: 9.6.2008
Пользователь №: 8 397



QUOTE(John777 @ 26.11.2009, 14:04) *

snav, спасибо, понял свою ошибку в понимании симметричности.

Powered by Java, извините, но уши вянут wink.gif
Нам не нужно их сравнивать! Нужно сравнить ожидание выйгрыша и проигрыша в сумме за несколько игр (или за одну игру).

Надо, ибо мы строим модель и хотим неким образом суммировать информацию о результатах бесконечного кол-ва испытаний. Что такое ожидание? Это некая величина, которая будет в среднем в бесконечном кол-ве испытаний. Именно ее мы и ищем. Именно для этого и нужна норма.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tatunya
26.11.2009, 14:22
Сообщение #47


Участник
**

Группа: Пользователи Braingames
Сообщений: 225
Регистрация: 4.9.2008
Пользователь №: 9 774



QUOTE(Powered by Java @ 26.11.2009, 14:23) *

....
Можно ли модель 2.б применить к этой задаче? Вполне. Задача, опять же, не имеет четко-заданных ограничений на применимость обеих норм.
А в чем ошибка док-ва, которую следует найти? В том, что использованы две разные и не совместимые модели для доказательства.

Как много букв, но может этот парадокс и пытаются разрешить, что при разных моделях (подходах) разный результат. И в моем понимании, чтобы разрешить парадокс, надо найти причину для неприменимости какой-либо модели.

QUOTE(Powered by Java @ 26.11.2009, 15:14) *

Что такое ожидание? Это некая величина, которая будет в среднем в бесконечном кол-ве испытаний. Именно ее мы и ищем.

А есть ли это бесконечное число испытаний после открытия первого конверта? Как здесь надо трактовать матожидание и почему им можно руководствоваться?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Powered by Java
26.11.2009, 15:38
Сообщение #48


Активный участник
***

Группа: Модераторы BrainGames
Сообщений: 544
Регистрация: 9.6.2008
Пользователь №: 8 397



QUOTE(tatunya @ 26.11.2009, 14:22) *

Как много букв, но может этот парадокс и пытаются разрешить, что при разных моделях (подходах) разный результат. И в моем понимании, чтобы разрешить парадокс, надо найти причину для неприменимости какой-либо модели.

В условии нет ничего, про выбор сумм в конвертах. Это и позволяет нам строить 2 разные по сути и решению модели. Если конкретизировать модель тем или иным образом, парадокс исчезнет сам собой.
Давайте поясню на примере парадокса Монти-Холла, который не вызывает сомнений.
В оригинале, ведущий всегда открывает дверь с козой. Это в нашем случае аналогично модели 2.б.
Представим себе, что в условии было: ведущий всегда открывает 3-ю дверь (даже если там авто или игрок выбрал именно третью дверь). И вот ситуация, игрок выбрал первую дверь, а ведущий открыл 3-ю и за ней коза. Стоит ли ему менять выбор? В такой трактовке - все равно. Это аналогично модели 2.а.
Все споры вокруг задачи двух конвертов в том, что ограничения на обе модели а и б нет! И каждый начинает трактовать условия в пользу одного либо другого подхода, а некоторые, в пользу обеих сразу и получают парадокс.
Мое личное мнение (аргументированное), обе модели корректны в рамках поставленных условий и парадокса нет. А вот условие задачи - не полное.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tatunya
26.11.2009, 16:05
Сообщение #49


Участник
**

Группа: Пользователи Braingames
Сообщений: 225
Регистрация: 4.9.2008
Пользователь №: 9 774



QUOTE(Powered by Java @ 26.11.2009, 16:38) *

В условии нет ничего, про выбор сумм в конвертах.

Сумма выбирается случайно с заданной вероятностью (я рассматриваю именно корректную вероятностную модель, приведенную snavом в комментариях).
QUOTE(Powered by Java @ 26.11.2009, 16:38) *

В оригинале, ведущий всегда открывает дверь с козой. Представим себе, что в условии было: ведущий всегда открывает 3-ю дверь

Это уже просто две абсолютно разные задачи, а тут одна задача, корректная и жизненная, по моему личному мнению она не может быть не полной. Лично вы будете менять конверт?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Powered by Java
26.11.2009, 16:17
Сообщение #50


Активный участник
***

Группа: Модераторы BrainGames
Сообщений: 544
Регистрация: 9.6.2008
Пользователь №: 8 397



QUOTE(tatunya @ 26.11.2009, 16:05) *

Сумма выбирается случайно с заданной вероятностью (я рассматриваю именно корректную вероятностную модель, приведенную snavом в комментариях).

Если вероятностная модель известна, то парадокса быть не может! Весь парадокс основан на отсутствии именно этой информации.
QUOTE(tatunya @ 26.11.2009, 16:05) *

Это уже просто две абсолютно разные задачи, а тут одна задача, корректная и жизненная, по моему личному мнению она не может быть не полной. Лично вы будете менять конверт?

Пусть я открыл конверт и там 4$. Если мне гарантируют, что в конверт могла попасть пара 2-4 с той же вероятностью, что и пара 4-8, то да. Если не гарантируют, то буду субъективен.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tatunya
26.11.2009, 16:22
Сообщение #51


Участник
**

Группа: Пользователи Braingames
Сообщений: 225
Регистрация: 4.9.2008
Пользователь №: 9 774



QUOTE(snav @ 24.11.2009, 14:25) *


Допустим, известно априорное распределение денег в конвертах:
- с вероятностью 1/2 кладем в конверты 1 и 10 долларов,
- с вероятностью 1/4 кладем в конверты 10 и 100 долларов,
...
- с вероятностью 1/2^n кладем в конверты 10^(n-1) и 10^n долларов.
Это вполне законное распределение! Сумма вероятностей равна 1.

Теперь пусть в первом конверте оказалось 10^n денег, где n>0. Вероятность того, что в другом конверте больше денег, в два раза меньше, чем вероятность того, что в другом конверте меньше денег. То есть с вероятностью 2/3 там 10^(n-1) долларов и с вероятностью 1/3 там 10^(n+1) долларов. Следовательно, матожидание выигрыша при обмене больше 0. Если же в первом конверте оказался 1 доллар (n=0), то целесообразность смены конверта очевидна. Получается, что в любом случае конверт выгодно поменять.


Powered by Java,
вероятностная модель известна, парадокс есть.
Я вообще предлагаю именно эту формулировку вынести в шапку.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Powered by Java
26.11.2009, 17:02
Сообщение #52


Активный участник
***

Группа: Модераторы BrainGames
Сообщений: 544
Регистрация: 9.6.2008
Пользователь №: 8 397



QUOTE(tatunya @ 26.11.2009, 16:22) *

Powered by Java,
вероятностная модель известна, парадокс есть.
Я вообще предлагаю именно эту формулировку вынести в шапку.


Вы до сих пор оперируете всеми тремя моделями, создавая парадокс.
Говорить про выигрыш/проигрыш как факт угадывания нужного конверта - Модель 1.
Говорить про выигрыш/проигрыш для выбранной пары, но разных числах в первом конверте - Модель 2.а.
Говорить про выигрыш/проигрыш для случайной пары и одинакового числа в первом конверте - Модель 2.б.

Если мы гарантируем некое распределение на стадии выбора конкретной суммы денег в конвертах для каждого испытания, то Модель 2.а не имеет смысла. Когда мы говорим, что выбор сделан и пара зафиксирована, то нельзя говорить о первоначальном распределении и Модель 2.б не имеет смысла.
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
tatunya
26.11.2009, 17:40
Сообщение #53


Участник
**

Группа: Пользователи Braingames
Сообщений: 225
Регистрация: 4.9.2008
Пользователь №: 9 774



QUOTE(Powered by Java @ 26.11.2009, 18:02) *

Если мы гарантируем некое распределение на стадии выбора конкретной суммы денег в конвертах для каждого испытания, то Модель 2.а не имеет смысла. Когда мы говорим, что выбор сделан и пара зафиксирована, то нельзя говорить о первоначальном распределении и Модель 2.б не имеет смысла.


Это конечно хорошо, но с таким распределением вы что будете делать? Менять конверт или нет? И что вам даст тот факт, что в зависимости от модели, получаются разные результаты?
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
Mouse
26.11.2009, 17:45
Сообщение #54


и.о. админа
**

Группа: Администраторы
Сообщений: 86
Регистрация: 5.12.2006
Пользователь №: 20



snav - злостный провокатор smile.gif
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
John777
26.11.2009, 18:32
Сообщение #55


Kорифей
****

Группа: Пользователи Braingames
Сообщений: 1 669
Регистрация: 13.11.2008
Из: Москва
Пользователь №: 10 702



QUOTE(Mouse @ 26.11.2009, 17:45) *

snav - злостный провокатор smile.gif


Да, ладно...
Ща по-быстрому решим это, потом переидем к Большой теореме Ферма, а там уж можно будет и за нерешенные проблемы браться... biggrin.gif


--------------------
Изображение
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
snav
29.11.2009, 20:51
Сообщение #56


Kорифей
****

Группа: Модераторы
Сообщений: 4 133
Регистрация: 13.4.2008
Из: Россия
Пользователь №: 7 457



Ну что... похоже глухо. Мозговой штурм не помог. smile.gif
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
John777
30.11.2009, 5:14
Сообщение #57


Kорифей
****

Группа: Пользователи Braingames
Сообщений: 1 669
Регистрация: 13.11.2008
Из: Москва
Пользователь №: 10 702



QUOTE(snav @ 29.11.2009, 20:51) *

Ну что... похоже глухо. Мозговой штурм не помог. smile.gif


Извините, но чего вы ожидали?
По-моему, это не тот сайт, где можно давать на обсуждение что-то, чье решение может занять более получаса.


--------------------
Изображение
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
snav
30.11.2009, 7:19
Сообщение #58


Kорифей
****

Группа: Модераторы
Сообщений: 4 133
Регистрация: 13.4.2008
Из: Россия
Пользователь №: 7 457



Ожидал, что вдруг найдется какой-нибудь гений, который разложит всё по полочкам. smile.gif
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
сапер
1.12.2009, 22:46
Сообщение #59


сапёр
****

Группа: Пользователи Braingames
Сообщений: 1 971
Регистрация: 29.10.2007
Из: Москва
Пользователь №: 4 134



QUOTE(Mouse @ 26.11.2009, 17:45) *

snav - злостный провокатор smile.gif

smile.gif А мне сама идея темы нравится! Предлагаю здесь для всех желающих публиковать наиболее интересные математические софизмы/парадоксы и, задающему разумно "насмерть" противостоять опровергающим, до момента приведения убойных аргументов по разлому парадокса
Судя по всему, пока идея snav, если я ее правильно понял, пытающимися что-либо объяснять по имеющимуся парадоксу, воспринята бы "кисло" sad.gif
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения
snav
2.12.2009, 8:11
Сообщение #60


Kорифей
****

Группа: Модераторы
Сообщений: 4 133
Регистрация: 13.4.2008
Из: Россия
Пользователь №: 7 457



QUOTE(сапер @ 1.12.2009, 22:46) *
Предлагаю здесь для всех желающих публиковать наиболее интересные математические софизмы/парадоксы

Только, пожалуйста, не в этой теме. smile.gif
Пользователь в офлайнеКарточка пользователяОтправить личное сообщение
Вернуться в начало страницы
+Ответить с цитированием данного сообщения

15 Страниц V < 1 2 3 4 5 > » 
Ответить в эту темуОткрыть новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0 -

 



- Упрощённая версия Сейчас: 6.12.2019, 1:49